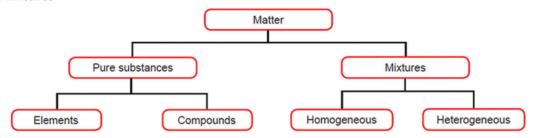

Note: Summaries are most helpful post-content review.

Gold Standard MCAT General Chemistry Review: Stoichiometry

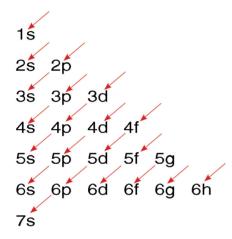
• Mole - Atomic and Molecular Weights

• Categories of Chemical Reactions



Note: Any reaction that does not involve the transfer of electrons (= change in oxidation numbers) qualifies as a non-redox reaction. Combination reactions qualify as non-redox reactions when all reactants and products are compounds and the oxidation numbers do not change. Decomposition reactions qualify as non-redox reactions when all reactants and products are compounds and the oxidation numbers do not change.

- Oxidation Numbers, Redox Reactions, Oxidizing vs. Reducing Agents
 - Here are the general rules:
 - In elementary substances, the oxidation number of an uncombined element is zero
 - In monatomic ions the oxidation number of the elements that make up this ion is equal to the charge of the ion
 - In a neutral molecule the sum of the oxidation numbers of all the elements that make up the molecule is zero
 - Some useful oxidation numbers to memorize
 - For H: +1, except in metal hydrides where it is equal to -1
 - For O: -2 in most compounds; In peroxides (e.g. in H_2O_2) the oxidation number for O is -1, it is +2 in OF_2 and -1/2 in superoxides
 - For alkali metals: +1
 - For alkaline earth metals: +2
 - Aluminium always has an oxidation number of +3 in all its compounds


Common Redox Agents			
Reducing Agents	Oxidizing Agents		
* Lithium aluminium hydride (LiAlH ₄) * Sodium borohydride (NaBH ₄) * Metals * Ferrous ion (Fe ²⁺)	* Iodine (I ₂) and other halogens * Permanganate (MnO ₄) salts * Peroxide compounds (i.e. H ₂ O ₂) * Ozone (O ₃); osmium tetroxide (OsO ₄) * Nitric acid (HNO ₃); nitrous oxide (N ₂ O)		

Mixtures

Gold Standard MCAT General Chemistry Review: Electronic Structure & The Periodic Table

• Conventional Notation for Electronic Structure

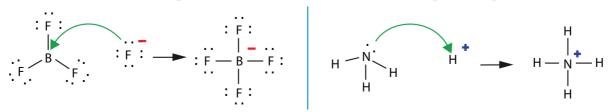
The order for filling atomic orbitals: Follow the direction of successive arrows moving from top to bottom.

Metals, Nonmetals and Metalloids

*General Characteristics of metals, nonmetals and metalloids

Metals	Nonmetals	Metalloids
Hard and shiny	Gases or dull, brittle solids	Appearance will vary
3 or less valence electrons	5 or more valence electrons	3 to 7 valence electrons
Form + ions by losing e	Form – ions by gaining e	Form + and/ or - ions
Good conductors of heat and electricity	Poor conductors of heat and electricity	Conduct better than nonmetals, but not as well as metals

^{*}These are general characteristics. There are exceptions beyond the scope of the exam.


Gold Standard MCAT General Chemistry Review: Bonding

- Partial Ionic Character
 - This polar bond will also have a dipole moment given by:

$$D = q \cdot d$$

where q is the charge and d is the distance between these two atoms.

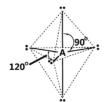
- Lewis Acids and Lewis Bases
 - The Lewis acid BF₃ and the Lewis base NH₃. Notice that the green arrows follow the flow of electron pairs. {Mnemonic: lEwis Acids: Electron pair Acceptors}

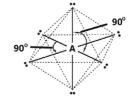
Page 2 of 12 MCAT GENERAL CHEMISTRY SUMMARY

- Valence Shell Electronic Pair Repulsions (VSEPR Models)
 - Geometry of simple molecules in which the central atom A has one or more lone pairs of electrons (= e⁻)

Total number of e⁻ pairs	Number of lone pairs	Number of bonding pairs	Electron Geometry, Arrangement of e ⁻ pairs	Molecular Geometry (Hybridization State)	Examples
3	1	2	B B Trigonal planar	Bent (sp²)	SO ₂
4	1	3	B B B Tetrahedral	Trigonal pyramidal (sp³)	NH₃
4	2	2	B Tetrahedral	Bent (sp³)	H₂O
5	1	4	B B B Trigonal bipyramidal	Seesaw (sp³d)	SF₄
5	2	3	B B B Trigonal bipyramidal	T-shaped (sp³d)	CIF₃

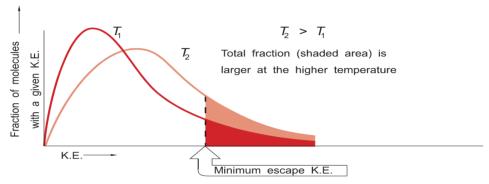
Note: dotted lines only represent the overall molecular shape and not molecular bonds. In brackets under "Molecular Geometry" is the hybridization.


linear arrangement of 2 electron pairs around central atom A


trigonal planar arrangement of 3 electron pairs around central atom A

tetrahedral arrangement of 4 electron pairs around central atom A

trigonal bipyramidal arrangement of 5 electron pairs around central atom A



octahedral arrangement of 6 electron pairs around central atom A

Molecular arrangement of electron pairs around a central atom A. Dotted lines only represent the overall molecular shape and not molecular bonds.

Gold Standard MCAT General Chemistry Review: Phases & Phase Equilibria

- Standard Temperature and Pressure, Standard Molar Volume
 - 0 °C (273.15 K) and 1.00 atm (101.33 kPa = 760 mmHg = 760 torr); these conditions are known as the standard temperature and pressure (STP). {Note: the SI unit of pressure is the pascal (Pa).}
 - The volume occupied by one mole of any gas at STP is referred to as the standard molar volume and is equal to 22.4 L.
- Kinetic Molecular Theory of Gases (A Model for Gases)
 - The average kinetic energy of the particles ($KE = 1/2 \text{ mv}^2$) increases in direct proportion to the temperature of the gas (KE = 3/2 kT) when the temperature is measured on an absolute scale (i.e. the Kelvin scale) and k is a constant (the Boltzmann constant).

The Maxwell Distribution Plot

Graham's Law (Diffusion and Effusion of Gases)

$$\frac{\mathsf{Rate}_{\scriptscriptstyle 1}}{\mathsf{Rate}_{\scriptscriptstyle 2}} = \sqrt{\frac{M_{\scriptscriptstyle 2}}{M_{\scriptscriptstyle 1}}}$$

Charles' Law

$$V = \text{Constant} \times T$$
 or $V_1/V_2 = T_1/T_2$

Combined Gas Law

$$\frac{P_1V_1}{T_1} = k = \frac{P_2V_2}{T_2}$$
 (at constant mass)

Ideal Gas Law

$$PV = nRT$$

since m/V is the density (d) of the gas:

$$P = \frac{dRT}{M}$$

Boyle's Law

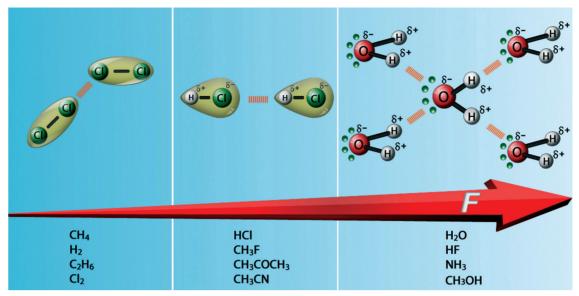
$$V = \text{Constant} \times 1/P$$
 or $P_1V_1 = P_2V_2$

Partial Pressure and Dalton's Law

$$P_T = P_1 + P_2 + \dots + P_i$$

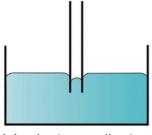
Of course, the sum of all mole fractions in a mixture must equal one:

$$\Sigma X_1 = 1$$

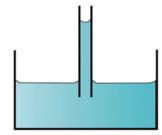

Avogadro's Law

$$V/n = Constant$$
 or $V_1/n_1 = V_2/n_2$

The partial pressure (P_i) of a component of a gas mixture is equal to:

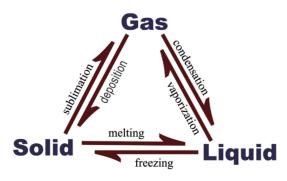

$$P_i = X_i P_T$$

Liquid Phase (Intra- and Intermolecular Forces)

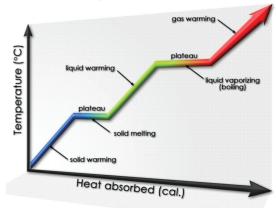


Van Der Waal's forces (weak) and hydrogen bonding (strong). London forces between Cl₂ molecules, dipole-dipole forces between HCl molecules and H-bonding between H₂O molecules. Note that a partial negative charge on an atom is indicated by δ - (delta negative), while a partial positive charge is indicated by δ + (delta positive). Notice that one H_2O molecule can potentially form 4 H-bonds with surrounding molecules which is highly efficient. The preceding is one key reason that the boiling point of water is higher than that of ammonia, hydrogen fluoride, or methanol.

- **Surface Tension**
 - PE is directly proportional to the surface area (A)
 - PE = gA; g = surface tension
 - g = F/I; F = force of contraction of surface; I = length along surface



(a) cohesive > adhesive



(b) adhesive > cohesive

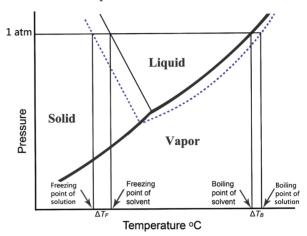
Phase Changes

Phase Diagrams

Gold Standard MCAT General Chemistry Review: Solution Chemistry

• Vapor-Pressure Lowering (Raoult's Law)

$$P = P^{\circ}X_{solvent}$$


where P = vapor pressure of solution $P^{\circ} = \text{vapor pressure of pure solvent (at the same temperature as P)}$

Osmotic Pressure

$$\Pi = i MRT$$

where R = gas constant per mole
T = temperature in degrees K and
M = concentration of solute (mole/liter)
i = Van't Hoff factor

 Boiling-Point Elevation and Freezing-Point Depression

Phase diagram of water demonstrating the effect of the addition of a solute $\Delta T_B = iK_b m$ $\Delta T_F = iK_F m$

- Ions in Solution
 - Ions that are positively charged = $\frac{\text{cations}}{\text{cations}}$; ions that are negatively charged = $\frac{\text{anions}}{\text{cations}}$
 - *Mnemonic:* anions are negative ions
 - The word "aqueous" simply means containing or dissolved in water

	Common Anions				
F ⁻	Fluoride	OH ⁻	Hydroxide	CIO-	Hypochlorite
Cl ⁻	Chloride	NO ₃	Nitrate	CIO ₂	Chlorite
Br ⁻	Bromide	NO ₂	Nitrite	CIO ₃ -	Chlorate
1-	lodide	CO ₃ ²⁻	Carbonate	CIO ₄	Perchlorate
O ²⁻	Oxide	SO ₄ ²⁻	Sulfate	SO ₃ ²⁻	Sulfite
S ²⁻	Sulfide	PO ₄ 3-	Phosphate	CN ⁻	Cyanide
N ³⁻	Nitride	CH ₃ CO ₂	Acetate	MnO ₄	Permanganate

Common Cations				
Na⁺	Sodium	H ⁺	Hydrogen	
Li ⁺	Lithium	Ca ²⁺	Calcium	
K ⁺	Potassium	Mg ²⁺	Magnesium	
NH ₄ ⁺	Ammonium	Fe ²⁺	Iron (II)	
H ₃ O ⁺	Hydronium	Fe ³⁺	Iron (III)	

Common Anions and Cations

- Units of Concentration
 - Molarity (M): moles of solute/liter of solution (solution = solute + solvent)
 - □ Normality (N): one equivalent per liter
 - □ Molality (m): one mole/1000g of solvent
 - Molal concentrations are not temperaturedependent as molar and normal concentrations are
 - Density (ρ): Mass per unit volume at the specified temperature
 - Osmole (Osm): The number of moles of particles (molecules or ions) that contribute to the osmotic pressure of a solution
 - Osmolarity: osmoles/liter of solution
 - Osmolality: osmoles/kilogram of solution
 - Mole Fraction: amount of solute (in moles) divided by the total amount of solvent and solute (in moles)

 Solubility Product Constant, the Equilibrium Expression

$$AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$$

$$K_{sp} = [Ag^{\scriptscriptstyle +}][CI^{\scriptscriptstyle -}]$$

Because the K_{sp} product always holds, precipitation will not take place unless the product of $[Ag^{+}]$ and $[Cl^{-}]$ exceeds the K_{sp} .

- Solubility Rules
 - 1. All salts of alkali metals are soluble.
 - 2. All salts of the ammonium ion are soluble.
 - 3. All chlorides, bromides and iodides are water soluble, with the exception of Ag^+ , Pb^{2+} , and Hg_2^{2+} .
 - 4. All salts of the sulfate ion (SO_4^{2-}) are water soluble with the exception of Ca^{2+} , Sr^{2+} , Ba^{2+} , and Pb^{2+} .
 - 5. All metal oxides are insoluble with the exception of the alkali metals and CaO, SrO and BaO.
 - 6. All hydroxides are insoluble with the exception of the alkali metals and Ca²⁺, Sr²⁺, Ba²⁺.
 - 7. All carbonates (CO₃²⁻), phosphates (PO₄³⁻), sulfides (S²⁻) and sulfites (SO₃²⁻) are insoluble, with the exception of the alkali metals and ammonium.

Gold Standard MCAT General Chemistry Review: Acids & Bases

Acids

 $K_a = [H^+][A^-]/[HA]$

STRONG	WEAK
Perchloric HClO ₄	Hydrocyanic HCN
Chloric HClO₃	Hypochlorous HCIO
Nitric HNO ₃	Nitrous HNO ₂
Hydrochloric HCl	Hydrofluoric HF
Sulfuric H ₂ SO ₄	Sulfurous H₂SO₃
Hydrobromic HBr	Hydrogen Sulfide H₂S
Hydriodic HI	Phosphoric H₃PO₄
Hydronium Ion H₃O ⁺	Benzoic, Acetic and other Carboxylic Acids

Bases

 $K_b = [HB^+][OH^-]/[B]$

- Strong bases include any hydroxide of the group 1A metals
- The most common weak bases are ammonia and any organic amine.
- Conjugate Acid-Base Pairs
 - The acid, HA, and the base produced when it ionizes, A-, are called a conjugate acid-base pair.

Water Dissociation

$$K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$$

• Salts of Weak Acids and Bases

$$K_a \times K_b = K_w$$

Buffers

$$pH = pK_a + log([salt]/[acid])$$

$$pOH = pK_h + log ([salt]/[base])$$

• The pH Scale

$$pH = -log_{10}[H^+]$$

$$pOH = -log_{10}[OH^{-}]$$

at
$$25^{\circ}$$
C, pH + pOH = 14.0

Properties of Logarithms

1.
$$\log_a a = 1$$

2.
$$\log_a M^k = k \log_a M$$

3.
$$log_a(MN) = log_aM + log_aN$$

4.
$$\log_a(M/N) = \log_a M - \log_a N$$

5.
$$10^{\log_{10}(M)} = M$$

Gold Standard MCAT General Chemistry Review: Thermodynamics

• The First Law of Thermodynamics

$$\Delta E = Q - W$$

- heat <u>absorbed</u> by the system: Q > 0
- heat <u>released</u> by the system: Q < 0
- work done by the system on its surroundings: W > 0
- \circ work done by the surroundings on the system: W < 0
- Temperature Scales

$$0 \text{ K} = -273.13 \, ^{\circ}\text{C}.$$

$$(X \circ F - 32) \times 5/9 = Y \circ C$$

- State Functions
 - W can be determined experimentally by calculating the area under a pressure-volume curve

	Work	Heat	Changes in internal energy
1st tranf.	W	0	-W
2nd transf.	W = w + q	q	-W

Gold Standard MCAT General Chemistry Review: Enthalpy & Thermochemistry

- Heat of Reaction: Basic Principles
 - \circ A reaction during which heat is released is said to be exothermic (ΔH is negative).
 - If a reaction requires the supply of a certain amount of heat it is endothermic (ΔH is positive).

$$\Delta H_{OVERALL} = \Delta H_1 + \Delta H_2$$

$$\Delta H^{\circ}_{reaction} = \Sigma \Delta H^{\circ}_{f(products)} - \Sigma \Delta H^{\circ}_{f(reactants)}$$

Bond Dissociation Energies and Heats of Formation

$$\begin{split} \Delta H^{\circ}_{\text{(reaction)}} &= \Sigma \Delta H_{\text{(bonds broken)}} + \Sigma \Delta H_{\text{(bonds formed)}} \\ &= \Sigma B E_{\text{(reactants)}} - \Sigma B E_{\text{(products)}} \end{split}$$

Calorimetry

$$Q = mC(T_2 - T_1)$$

$$Q = m L$$

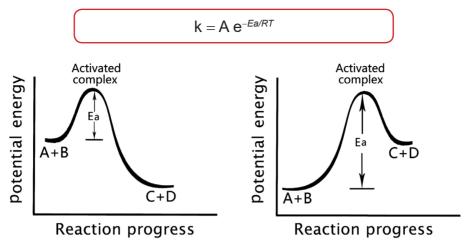
- The Second Law of Thermodynamics
 - For any spontaneous process, the entropy of the universe increases which results in a greater dispersal or randomization of the energy ($\Delta S > 0$).
- Entropy

$$\Delta S^{\circ}_{\text{ reaction}} = \Delta S^{\circ}_{\text{ products}} - \Delta S^{\circ}_{\text{ reactants}}$$

• Free Energy

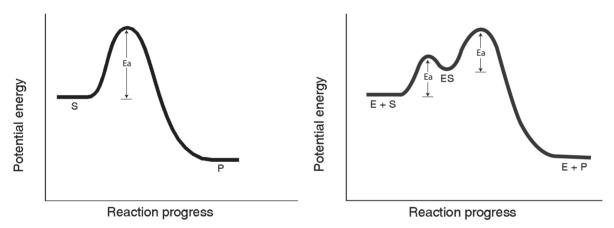
$$\Delta G = \Delta H - T \Delta S$$

- A reaction carried out at constant pressure is spontaneous if: $\Delta G < 0$
- It is not spontaneous if: $\Delta G > 0$
- It is in a state of equilibrium (reaction spontaneous in both directions) if: $\Delta G = 0$

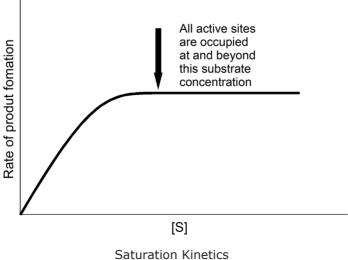

Gold Standard MCAT General Chemistry Review: Rate Processes in Chemical Reactions

• Dependence of Reaction Rates on Concentration of Reactants

$$rate = k [A]^m [B]^n$$


- [] is the concentration of the corresponding reactant in moles per liter
- k is referred to as the rate constant
- o m is the order of the reaction with respect to A
- on is the order of the reaction with respect to B
- o m+n is the overall reaction order

Dependence of Reaction Rates upon Temperature



Potential Energy Diagrams: Exothermic vs. Endothermic Reactions

Catalysis

Potential Energy Diagrams: Without and With a Catalyst

• Equilibrium in Reversible Chemical Reactions

$$aA + bB \rightleftharpoons cC + dD$$

$$K = \frac{[C]^{c} [D]^{d}}{[A]^{a} [B]^{b}}$$

- {Note: Catalysts speed up the rate of reaction without affecting K_{eq} }
- Le Chatelier's Principle
 - Le Chatelier's principle states that whenever a perturbation is applied to a system at equilibrium, the system evolves in such a way as to compensate for the applied perturbation.
 - Relationship between the Equilibrium Constant and the Change in the Gibbs Free Energy

$$\Delta G^{\circ} = -R \ T \ In \ K_{eq}$$

Gold Standard MCAT General Chemistry Review: Electrochemistry

- Generalities
 - The more positive the E° value, the more likely the reaction will occur spontaneously as written.
 - The strongest reducing agents have large negative E° values.
 - The strongest oxidizing agents have large positive E° values.
 - The oxidizing agent is reduced; the reducing agent is oxidized.
- Galvanic Cells
 - Mnemonic: LEO is A GERC
 - Lose Electrons Oxidation is Anode
 - Gain Electrons Reduction at Cathode
- Concentration Cell
 - Nernst equation

$$\mathsf{E}_{\mathsf{cell}} = \mathsf{E}^{\circ}_{\mathsf{cell}} - (\mathsf{RT/nF})(\mathsf{In}\;\mathsf{Q})$$

- Faraday's Law
 - Faraday's law relates the amount of elements deposited or gas liberated at an electrode due to current.
 - One mole (= Avogadro's number) of electrons is called a faraday (\mathfrak{F}) .
 - A faraday is equivalent to 96 500 coulombs.
 - A coulomb is the amount of electricity that is transferred when a current of one ampere flows for one second (1C = 1A . S).

MCAT-prep.com

The Only Prep You Need™

Increase your chances of getting into the medical school of your choice with these MCAT preparation resources.

MCAT Prep Courses and Practice Tests

www.mcat-prep.com mcat-prep.com/mcat-prep-courses mcat-prep.com/mcat-practice-tests

Free MCAT Practice Tests and Sample Questions

<u>mcat-prep.com/free-mcat-practice-test</u> <u>mcat-prep.com/mcat-sample-questions</u>

Science Summaries

mcat-prep.com/mcat-physics-equations-sheet mcat-prep.com/mcat-general-chemistry-review-summary mcat-prep.com/mcat-organic-chemistry-mechanisms mcat-prep.com/mcat-biochemistry-review-summary

MCAT Guide

mcat-prep.com/what-is-the-mcat mcat-prep.com/mcat-topics-list mcat-prep.com/mcat-scores mcat-prep.com/mcat-study-schedule